Tool Path Planning for Five-Axis Flank Milling with Developable Surface Approximation

نویسندگان

  • Chih-Hsing Chu
  • Jang-Ting Chen
چکیده

This paper presents a novel approach that automatically generates interference-free tool path for five-axis flank milling of ruled surface. A boundary curve of the machined surface is subdivided into curve segments. Each segment works as a guide curve in the design method for developable Bézier surface that controls a developable patch for approximating the surface with available degrees of freedom. Geometric algorithms are proposed for calculating consecutive patches with G1 continuity across the patch boundary. A tapered tool can move along the rulings of these patches without inducing local tool interference as a result of their developability. The machining deviation is controlled by the surface approximation error. A machining test is conducted with the generated CL data and the result verifies the feasibility of the proposed approach. This work successfully transforms avoidance of tool interference into a geometric modeling problem and provides a simple solution. It thus demonstrates a good potential of the developable surface theory for five-axis flank machining.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Tool Positioning in 5-Axis Flank Milling by Simultaneous Perturbation Stochastic Approximation

This paper presents an improved tool positioning strategy in the 5-axis flank milling of a ruled surface by using simultaneous perturbation stochastic approximation (SPSA) techniques. The SPSA allows the near-global optimization of the machining error, even though the corresponding objective is not formulated as a closed-form representation. It adjusts all cutter locations of a tool path simult...

متن کامل

Generating High-Accuracy Tool Path for 5-axis Flank Milling of Globoidal Spatial Cam

A new tool path planning method for 5-axis flank milling of a globoidal indexing cam is developed in this paper. The globoidal indexing cam is a practical transmission mechanism due to its high transmission speed, accuracy and dynamic performance. Machining the cam profile is a complex and precise task. The profile surface of the globoidal cam is generated by the conjugate contact motion of the...

متن کامل

Improving optimization of tool path planning in 5-axis flank milling using advanced PSO algorithms

This paper studies optimization of tool path planning in 5-axis flank milling of ruled surfaces using advanced Particle Swarm Optimization (PSO) methods with machining error as an objective. We enlarge the solution space in the optimization by relaxing the constraint imposed by previous studies that the cutter must make contact with the boundary curves. Advanced Particle Swarm Optimization (APS...

متن کامل

New approach to 5-axis flank milling of free-form surfaces: Computation of adapted tool shape

This paper develops a new approach to solve the problem of interferences during the flank milling of a non-developable ruled surface. Many articles propose to modify the tool path to reduce this problem. A novel approach is proposed here, Computation of Adapted Tool Shape (CATS), which computes and optimizes the tool shape to reduce these interferences. The aim of this CATS method is to maintai...

متن کامل

Global optimization of tool path for five-axis flank milling with a conical cutter

In this paper, optimum positioning of the conical cutter for five-axis flank milling of slender surfaces is addressed from the perspective of approximating the tool envelope surface to the data points on the design surface following the minimum zone criterion recommended by ANSI and ISO standards for tolerance evaluation. Based on the observation that a conical surface can be treated as a canal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005